
Reducing the e-KYC file searching time in the
blockchain system using searchable symmetric
encryption and turbulence padded chaotic map

Lalu Raynaldi Pratama Putra
Graduate School of Forensic Science and Cyber Security

Telkom University
Bandung, Indonesia

laluraynaldipp@student.telkomuniversity.ac.id

Ari Moesriami Barmawi
Graduate School of Forensic Science and Cyber Security

Telkom University
Bandung, Indonesia

mbarmawi@melsa.net.id

Abstract—E-KYC systems often face severe challenges regard-
ing the security and privacy of the related documents stored
in the cloud, which becomes a crucial issue. As the volume of
data continues to grow, efficient verification becomes increasingly
critical. Traditional methods, which require files to be verified
individually, are time-consuming and inefficient. The proposed
system implements Searchable Symmetric Encryption is used to
handle searches from large data sets and maintain the security
aspect of seed generation using Turbulence Padded Chaotic Map.
Experimental research shows that the time for data searching on
large datasets improved significantly while maintaining security.

Index Terms—e-KYC,searchable symmetric encryp-
tion,turbulence padded chaotic map,blockchain

I. INTRODUCTION

The implementation of Know Your Customer (KYC) pro-
cesses are essential for banks and financial institutions to
verify the identities of their customers [1]. With technological
advancements, many institutions are transitioning from tradi-
tional KYC to electronic KYC (e-KYC) systems. However,
this shift has introduced new challenges related to efficiency,
effectiveness, and customer experience [2]. Customers often
repeat the data entry process, and institutions find it difficult
to manage and secure the large volumes of sensitive data
involved. Furthermore, the use of cloud-based e-KYC systems
raises significant privacy concerns. Storing sensitive customer
data in the cloud increases the risk of unauthorized access and
data breaches [3]. While some banks implement encryption
and decryption mechanisms on the cloud side to enhance secu-
rity, this introduces key distribution and centralized validation
issues, particularly concerning key revocation [2]. As the vol-
ume of data continues to grow, efficient verification becomes
increasingly critical. Traditional methods, which require files
to be verified individually, are time-consuming and inefficient.
Batch verification could offer a solution by allowing multiple
files to be verified simultaneously. However, existing e-KYC
systems have no batch verification capabilities, particularly in
decentralized environments such as blockchain networks [2].
This study addresses these challenges by proposing the use
of Searchable Symmetric Encryption (SSE)—a cryptographic

method that allows encrypted data to be searched efficiently [4]
[5]—integrated with blockchain technology [6]. This research
introduces a novel enhancement to the Pseudorandom Number
Generation PRNG within the SSE framework by employing
turbulence-padded chaotic map to further enhance the effi-
ciency and maintain the search method’s security. Based on
the experimental results, it can be proven that the proposed
method is more efficient in terms of search time to search
a large amount of data compared to the previous one while
maintaining the security aspects.

II. FUGKEAW METHOD

Recent research highlights ongoing challenges in balancing
security, privacy, and regulatory compliance within cloud-
based e-KYC systems, particularly around issues of data
exposure and inefficient key management [2]. The increasing
reliance on cloud-based e-KYC systems in financial services
has led to critical security and privacy concerns, primarily
due to risks associated with unauthorized data exposure and
complex key management. Existing solutions have addressed
some security aspects but need more essential privacy com-
pliance features, such as client consent enforcement and fine-
grained access control, which are necessary to meet regulatory
requirements like GDPR. Fugkeaw [2] introduces e-KYC
TrustBlock, a novel blockchain-based e-KYC framework that
integrates public key encryption with client consent manage-
ment through smart contracts to address those limitations. This
approach leverages attribute-based encryption (CP-ABE) to
achieve granular access control for sensitive transactions stored
on the blockchain, thereby enhancing data security and privacy
while meeting regulatory compliance standards. Additionally,
TrustBlock uses the Interplanetary File System (IPFS) for
decentralized document storage, ensuring accessibility and
data integrity. The core functionalities of e-KYC TrustBlock
are supported by a combination of smart contracts and hybrid
encryption protocols, including symmetric and public key en-
cryption, to balance security with processing efficiency. Smart
contracts automate key processes such as client registration,
consent enforcement, and e-KYC verification, streamlining

the workflow. In comparison to e-KYC frameworks proposed
by Hanbar et al. [1], Kapsoulis et al. [7], Bhaskaran et al.
[8], and Shabair et al. [9], Fugkeaw experimental results
indicate that TrustBlock performs better in encryption, de-
cryption, and policy update costs, as demonstrated through a
series of simulations testing encryption/decryption times and
policy update throughput. By utilizing a tree-based CP-ABE
structure, TrustBlock reduces the computational complexity
and improves the efficiency of access policy management.
These improvements demonstrate the system’s scalability and
practicality for real-world applications in e-KYC processes,
enabling financial institutions to perform secure and privacy-
compliant identity verification. The overview of Fugkeaw
method is shown in Figure 1.

Fig. 1. Fugkeaw’s TrustBlock method

Thus, it can be concluded that while e-KYC TrustBlock
offers a significant advancement in addressing the privacy
and efficiency limitations of traditional e-KYC systems, fur-
ther work is required to assess its performance with larger
datasets and to explore the integration of batch verification and
searchable encryption capabilities. These enhancements would
enable TrustBlock to accommodate high transaction volumes
and provide a more robust solution for e-KYC in decentralized
environments, ensuring scalability and enhanced data privacy.

III. PROPOSED METHOD

This section consists of four sub-sections, System Design
discusses the end-to-end process of the implementation of
blockchain-based searchable symmetric encryption; Pseudo-
random Number Generation (PRNG) discusses the Turbulence
Padded Chaotic Map (TPCM) works; Token Generation dis-
cusses how the token is generated on the SSE; Searching
Encrypted Data is discussing how the encrypted data can
search using the SSE.

A. System Design

This section provides a detailed explanation of each com-
ponent within the blockchain built upon the Searchable Sym-
metric Encryption (SSE) algorithm. As shown in Figure 2,
TrustBlock includes an additional blockchain layer specifically
designed to support SSE functionalities.

Fig. 2. Blockchain-based SSE on TrusBlock

In general, the system design of TrustBlock remains sim-
ilar to Fugkeaw’s models, but it introduces an additional
blockchain layer specifically to facilitate encrypted document
search. This enhancement allows for a more efficient retrieval
of encrypted data, maintaining the security and integrity
essential in e-KYC applications. By integrating this search
functionality directly within the blockchain framework, Trust-
Block addresses a the significant improvement compared with
traditional e-KYC systems, which can not perform seamless,
secure searches on encrypted data stored across decentralized
networks.

Fig. 3. SSE Blockchain Scenario

The Blockchain-based Searchable Symmetric Encryption
(SSE) implemented in TrustBlock is designed to handle search
computations while preserving the core decentralized nature
of blockchain. Figure 3 shows this native integration of
SSE enables TrustBlock to support secure, privacy-preserving
searches without compromising the decentralized principles
inherent to blockchain technology. With this approach, Trust-
Block maintains the security and enhance the efficiency of data
handling in e-KYC processes, as well as providing a scalable
solution for secure document retrieval in a decentralized
environment. This research presents an innovative improve-

ment to the PRNG within the SSE framework by integrating
turbulence-padded chaotic map. This approach harnesses the
inherent unpredictability of chaotic systems to maintain the
cryptographic strength of the SSE, improving search time
without compromising the security aspect.

B. Pseudorandom Number Generation (PRNG)

This section explains the pseudorandom number generation
(PRNG), the process that underpins the Searchable Symmetric
Encryption (SSE) system. As illustrated in Figure 4, the
PRNG used in this framework is the Turbulence Padded
Chaotic Map, which combines two chaotic map algorithms:
Bakers and Arnold. By merging these two chaotic algorithms,
the PRNG achieves a high degree of unpredictability and
randomness [10], crucial for secure and efficient encryption
in SSE. This approach enhances the encryption of each token
that been generated, ensuring the token has strong encryption
by improving the Seed.

Fig. 4. Turbulence Padded Chaotic Map

The details of the pseudorandom number generation is pre-
sented in Algorithm 1. The detail of the Baker is represented

Algorithm 1 TPCM
input :valX,valY,iteration
output : s

1: procedure TPCM
2: for i← 0 to iterations− 1 do
3: (BX,BY)← BakerMapTransform(valX, valY)
4: (AX,AY)← ArnoldCatMap(BX,BY)
5: valX ← AX
6: valY ← AY
7: end for
8: for i← 0 to length(BX)− 1 do
9: bit← evaluateXOR(BX[i].x, BY [i].y)

10: Append bit to s
11: end for
12: return s
13: end procedure

in Algorithm 2, and Arnold chaotic map in Algorithm 3. The
input of those two chaotic map algorithms is a float number
produced by the results of the preceding process. Algorithms
2 and 3 are repeated based on the setting of output length.
In the proposed method the output is set of 16 bits in length,
which needs 128 iterations.

Algorithm 2 BakerMapTransform
input : x,y
output : value

1: procedure BAKERMAPTRANSFORM(x, y)
2: if x < 0.5 then
3: value← 2 · x, y/2
4: return value
5: else
6: value← 2 · x− 1, y/2 + 0.5
7: return value
8: end if
9: end procedure

Algorithm 3 ArnoldCatMap
input : x,y
output : x,y

1: procedure ARNOLDCATMAP(x, y)
2: newX ← mod(x+ y, 1)
3: newY ← mod(x+ 2y, 1)
4: x← newX
5: y ← newY
6: return x, y
7: end procedure

C. Token Generation

This section discusses how users perform token generation.
Figure 5 shows the overview of token generation, which is
part of uploading documents to decentralized storage.

The procedure to perform token generation is as follows:
1) The user encrypts the search word w using an encryption

function Ek, producing Encrypted Word (X):

X = Ek(w). (1)

2) The encrypted value X is split into two parts, the
left part L and the right part R. The user generates
Word-based key kwb uses a pseudorandom function or
cryptographic function of left part L and k, where k is
symmetric key:

kwb = HMAC(k, L). (2)

3) Generating the Seed s using Turbulence Padded chaotic
map function.

s = TPCM. (3)

4) Generating the Fks using the pseudorandom function
of s and kwb.

Fks = HMAC(s, kwb). (4)

5) Generating left side of ciphertext C1 by XOR-ing s and
L

C1 = s⊕ L (5)

6) Generating right side of ciphertext C2 by XOR-ing Fks
with R

C2 = Fks⊕R (6)

7) Generating the token (C) for each word by concatenating
the C1 and C2

Token = C1||C2 (7)

Fig. 5. Token Generation

D. Searching Encrypted Data

The data search process in the condition of the encrypted
file can be achieved by carrying out the data upload process
using SSE method, then continue with the search process,
which applies the SSE method as well. As we saw in The
following Figure 6 shows the search process is divided into
two processes, namely generate searchToken, then process the
proof token on each file.

Fig. 6. Searching Encrypted Data

Generate Search Token

For generating the search token, w given by the user has
to be encrypted, which will become a token for searching to
produce Encrypted Word (X):

X = Ek(w). (8)

Furthermore, splitting X into two parts, L and R, uses L to
generate again Word-based key kwb using a pseudorandom
function of left part L and k, where k is symmetric key:

kwb = HMAC(k, L). (9)

Then, concatenate the (X+kwb) as SearchToken and send it
to decentralized storage.

Compute the Token Proof

The next part will processed on the server side :

1) Splitting SearchToken into two parts:

SearchToken→ [X, kwb],

2) Splitting X into two parts:

X → [L,R],

3) Extracting the ciphertext token from the encrypted doc-
ument and then for each ciphertext C in the encrypted
documents

4) Splitting C into two parts:

C → [C1, C2],

where C1 is the left part and C2 is the right part.
5) Computing the Seed s by XOR-ing C1 and kwb :

s = C1⊕ kwb. (10)

6) Computing the Fks by XOR-ing s and kwb

Fks = s⊕ kwb. (11)

7) Computing proof R by XOR-ing C2 and Fks

ProofR = C2 ⊕ Fks. (12)

8) Comparing proof R with R from splitting the X

ProofR == R. (13)

When the proof is correct, then the files are found, and the
server returns the corresponding encrypted document to the
user.

IV. EXPERIMENT EVALUATION

In this experiment, we will analyze the process of searching
for data with a large dataset on decentralized storage. To be
able to search for data, we first need to upload the data. There
are subprocesses in the data search process, namely generating
search tokens and proofing token processes. This process
is done by performing a lookup in a directory containing
encrypted files. Proofing will be carried out from each file
on the tokens contained in it. In this experiment, the hardware
specifications used are an eight-core CPU, 32 GB RAM, and
Linux OS.

A. Performance Analysis

The experiment result of execution time can be seen in the
Figure 7 using a data range of 1000 - 5000 files because
it adopts batch verification, the return from each search can
produce the same file because the same token when the search
process is carried out can return several files at the same time.

Fig. 7. Search Performancy

When comparing the two systems of the previous method
and the proposed method, it is found that when the number of

files searched is still in the hundreds range, the performance
of the previous method is better than the proposed method.
For example, when the number of files is around 161 to 217,
the search time with the previous ranges from 0.19 to 0.34
seconds, slightly faster than the proposed method in the range
of 0.34 to 0.51 seconds. The proposed method begins to show
a much better search time performance advantage in the range
of thousands of files, where the proposed method’s search time
is relatively stable and increases very slowly. At around 2,000
files, the proposed method takes between 0.39 to 1.2 seconds,
while the previous method can take 4 to 5 seconds or more.
This difference becomes more expansive when the number
of files increases to tens of thousands. The proposed method
can still keep the search time below three seconds, while the
previous method can jump to tens of seconds.

B. Security Analysis

The security testing process of the resulting seed uses the
entropy calculation method, assuming the previous method
uses time-based-PRNG while the proposed method uses
TPCM (Turbulence Padded Chaotic Map).

Fig. 8. Entropy comparison

From the data in Figure 8, the proposed method’s entropy
value tends to be 2.9 to 3.8. Based on Figure 7, the proposed
method can produce a relatively stable and consistent level of
entropy. Although there are some gaps between the proposed
and previous methods’ entropy, but they are insignificant.
The entropy value of the previous method shows a wider
variation. The resulting entropy value of the previous method
can reach almost 3.9 under specific conditions but can also
drop drastically to a range below 2.0. This extensive range
indicates that the previous method has a higher sensitivity
to time conditions or external factors that affect the random
number generation process. so it does not always guarantee
high entropy consistency.

V. CONCLUSION

This research aims to overcome the problem of Fugkeaw’s
method, which is a time-consuming and inefficient file-
searching process. Searchable Symmetric Encryption can over-
come the problem of the existing method, which is to search
data in large datasets on a blockchain network while maintain-
ing the security aspect of the seed generation using Turbulence
Padded Chaotic Map.

Based on the experiment, the proposed method’s searching
time is proven to be less than Fugkeaw’s method searching
time because Fugkeaw’s method compared the hash of each
file in the file searching process. From the point of view of
the security aspect, the proposed method has high entropy.
Meanwhile, Fugkeaw’s method has less entropy than the
proposed method. Thus, the security of the proposed method
is better than that of Fugkeaw’s method.

REFERENCES

[1] H. Hanbar, V. Shukla, C. Modi, and C. Vyjayanthi, “Optimizing e-
kyc process using distributed ledger technology and smart contracts,”
pp. 132–145, 2020.

[2] S. Fugkeaw, “Enabling trust and privacy-preserving e-kyc system using
blockchain,” IEEE Access, vol. 10, pp. 49028–49039, 2022.

[3] T. A. Mohammed and A. B. Mohammed, “Security architectures for sen-
sitive data in cloud computing,” in Proceedings of the 6th International
Conference on Engineering MIS 2020, pp. 1–6, ACM, 9 2020.

[4] K. Borg, N. Supervisor, and C. Li, “Searchable symmetric encryption
and its applications,” 2022.

[5] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” pp. 44–55, IEEE Comput. Soc.

[6] C. Xu, L. Yu, L. Zhu, and C. Zhang, “Blockchain-based verifiable dsse
with forward security in multi-server environments,” pp. 163–171, 2021.

[7] N. Kapsoulis, A. Psychas, G. Palaiokrassas, A. Marinakis, A. Litke,
and T. Varvarigou, “Know your customer (kyc) implementation with
smart contracts on a privacy-oriented decentralized architecture,” Future
Internet, vol. 12, p. 41, 2 2020.

[8] K. Bhaskaran, P. Ilfrich, D. Liffman, C. Vecchiola, P. Jayachandran,
A. Kumar, F. Lim, K. Nandakumar, Z. Qin, V. Ramakrishna, E. G.
Teo, and C. H. Suen, “Double-blind consent-driven data sharing on
blockchain,” in 2018 IEEE International Conference on Cloud Engi-
neering (IC2E), pp. 385–391, IEEE, 4 2018.

[9] W. M. Shbair, M. Steichen, J. Francois, and R. State, “Blockchain
orchestration and experimentation framework: A case study of kyc,” in
NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management
Symposium, pp. 1–6, IEEE, 4 2018.

[10] S. Krishnamoorthi, P. Jayapaul, R. K. Dhanaraj, V. Rajasekar,
B. Balusamy, and S. H. Islam, “Design of pseudo-random number
generator from turbulence padded chaotic map,” Nonlinear Dynamics,
vol. 104, pp. 1627–1643, 4 2021.

